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A FRAMEWORK FOR BLOCK ILU FACTORIZATIONS 
USING BLOCK-SIZE REDUCTION 

TONY F. CHAN AND PANAYOT S. VASSILEVSKI 

ABSTRACT. We propose a block ILU factorization technique for block tridiag- 
onal matrices that need not necessarily be M-matrices. The technique explores 
reduction by a coarse-vector restriction of the block size of the approximate 
Schur complements computed throughout the factorization process. Then on 
the basis of the Sherman-Morrison-Woodbury formula these are easily inverted. 
We prove the existence of the proposed factorization techniques in the case of 
(nonsymmetric, in general) M-matrices. For block tridiagonal matrices with 
positive definite symmetric part we show the existence of a limit version of the 
factorization (exact inverses of the reduced matrices are needed). The theory is 
illustrated with numerical tests. 

1. INTRODUCTION 

Consider a block tridiagonal M-matrix, or a block tridiagonal positive definite 
matrix, in both cases not necessarily symmetric, 

All A12 0 

A21 A22 A23 

A= .* *. Is 

An_l, n-2 An-l, n-I An-l, n 
0 An,n-l Ann 

the blocks Ai,j are of dimension ni x nj, and also Ai,j are assumed to be 
sparse. This paper deals with the construction of block ILU (incomplete or 
approximate LU) factorizations of sparse matrices of this form that typically 
arise in the finite difference or finite element discretization of second-order 
elliptic problems. There are already several block ILU techniques proposed in 
the literature, e.g., Kettler [1 5], Axelsson, Brinkkemper, and Il'in [3], Meurant 
[18]. General approaches were proposed in Concus, Golub, and Meurant [10], 
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Axelsson [1], see also Axelsson [2], Axelsson and Polman [5]. These methods 
work extremely well for 2-D (two-dimensional) problems; they exhibit very good 
vectorization properties and reasonably fast convergence, see, e.g., Meurant [ 18], 
Concus, Golub, and Meurant [10], Axelsson and Eijkhout [4]. However, for 
3-D problems their performance (both for blocks corresponding to grid lines as 
well as to grid planes) is not as satisfactory, cf., e.g., Axelsson and Eijkhout [4]. 
There are recent developments in the construction of special approximations 
to the approximate Schur complements computed throughout the factorization 
process, cf. Axelsson and Polman [6], Wittum [24]. For example, in Wittum 
[24] the method of deriving approximate inverses gives very accurate results but 
the cost is relatively high. Also the theory seems to be mostly applicable for 2-D 
problems. 

The purpose of the present paper is to derive a new class of block ILU factor- 
ization methods on the basis of reduction of the block size by a "coarse-grid" 
restriction to derive better and inexpensive approximations of the successive 
Schur complements during the factorization process. Then the inverses of these 
Schur complements can be computed on the basis of the well-known Sherman- 
Morrison-Woodbury formula (cf., e.g., Golub and van Loan [14]). We consider 
approximations for the inverses of these approximate Schur complements based 
mostly on sparse approximate inverses of the blocks Aii of the original matrix 
A. However, approximations based on the sine transform, or approximations 
based on the probing technique studied in detail by Chan and Mathew [8] and 
used also by Keyes and Gropp [16], Axelsson and Polman [6] and Wittum [24], 
as well as certain polynomial approximations are possible as well. Most of these 
cases will not be considered here. Our major concern in the present paper is the 
derivation and the proof of the existence of the proposed approximate block 
factorization matrices. 

Finally, we point out that the new method proposed in the present paper offers 
a potential for solving coupled systems of differential equations because it does 
not require the M-matrix property (or more generally, the H-matrix property, 
see Polman [19] and Kolotilina and Polman [17]), which was a limitation for 
the earlier (block) ILU factorization methods. 

The outline of the paper is as follows. Some preliminary facts are presented 
in ?2. In ?3 a general existence result is provided for generally nonsymmetric 
M-matrices for a specific choice of the restriction matrices needed for the re- 
duction of the block size. The assumptions made in ?3 are verified in ?4. In 
?5 some approximations of the inverses of the approximate Schur complements 
(that are computed throughout the factorization process) based on their rep- 
resentation obtained using the Sherman-Morrison-Woodbury formula are dis- 
cussed. In ?6 the existence of the factorization in the limit case, i.e., when the 
exact inverses of the reduced Schur complements are used, for block tridiago- 
nal matrices with positive definite symmetric part is proved. Finally in the last 
section the new method of block ILU matrices is illustrated by numerical ex- 
amples for M-matrices resulting from model second-order elliptic problems for 
2-D domains. The non-M-matrix case is considered in a forthcoming report. 

2. PRELIMINARIES 

In this section we present the commonly used block ILU factorization tech- 
nique (cf., e.g., Concus, Golub, and Meurant [10] and Axelsson and Polman 
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[5]), and then we introduce our new method pointing out the main differences. 
First we outline a general block ILU scheme. 
Let {Aii, Ai, i-I, Ai, j+ } belong to a class of sparse matrices with a simple 

structure (e.g., band, or with a fixed number of nonzero diagonals, etc.). 

(A General Block ILU Scheme). Set 

Z,= All, X1 = Approx1 (Zr1); 

for i=2, ..., n compute 

Zi = Aii -Ai, iXiAi, i 

and let 
Xi = Approx1 (Z-)1 

Finally, let 
Yi=Approx2(Zi), i=1,2,...,n. 

Then the block ILU factorization matrix is defined to be 
fYi 0 z I YF'1A12 ? 

(2.1) C= 1A21 Y2 J I Y 1'A23 
O Ann-I1 Yn 

The approximations Xi = Approx1 (Z-1) and Yi-1 based on Approx2(.) 
may be the same. The role of Approx1 (.) is to control a prespecified sparsity 
structure of the approximate Schur complements {Zi}, and the Approx2(.) is 
meant to either control a prescribed sparsity pattern of Yi, and hence make 
them easily factored or, if the blocks Yi-7 are explicitly formed, make their ap- 
plication to a vector easily computed. For example, in the case of a block tridi- 
agonal matrix arising from the discretization of 2-D (two-dimensional) second- 
order elliptic equations on a rectangular domain on a uniform mesh, using 
piecewise linear basis functions, the blocks {Aii} are (scalar) tridiagonal and 
the blocks Ai,i-I, Ai_1,i are diagonal. Then it is natural to keep the blocks 
{ Zi} banded. To achieve this, one can use for Approx1 (.) various banded ap- 
proximations of the inverses of the banded (by construction) approximate Schur 
complements {Zi}. For more details, cf., e.g., Concus, Golub, and Meurant 
[10], Axelsson and Polman [5], or Vassilevski [21], [22]. The motivation for 
banded approximations of {Z-1} is that the inverses of band matrices have 
certain decay rate, cf., e.g., Demko, Moss, and Smith [11], Vassilevski [21]. 
The decay rate is substantial if these band matrices are sufficiently diagonally 
dominant. This is the case for the blocks {Aii} of A in the particular example 
of 2-D second-order elliptic problems. The second approximation, Approx2(.) 
may be needed in a more general situation when the blocks Ai, i-I, Ai_1, i are 
sparse but not diagonal. Then, in general, these blocks create additional fill-in 
in {Zi} . That is why we may allow different approximations for the factoriza- 
tion process than in the computation of the final blocks { Yi } or { I}1 }Y . One 
possibility is to choose 

Xi = Approx1 (zI ) banded approximation to ZJ 1, 
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and 
Yi = Approx2 (Zi) -banded approximation to Zi. 

For more difficult problems, like those arising in the discretization of 3-D (three- 
dimensional) elliptic differential equations (including systems of differential 
equations), the approach of preserving certain sparsity patterns of the incom- 
plete factorization matrix is not as clearly motivated. For more details concern- 
ing finite difference elliptic equations in 3-D, cf., e.g., Axelsson and Eijkhout 
[4]. More importantly, the incomplete factorization methods based on preserv- 
ing certain sparsity patterns have proven existence basically only for M-matrices 
(or slightly more generally for H-matrices; see Polman [19] and Kolotilina and 
Polman [17]), and this is not the case, e.g., for matrices arising in the finite 
element or finite difference discretization of coupled systems of elliptic par- 
tial differential equations or for higher-order finite elements for single elliptic 
equations. 

We now present the new method. It can be written in the general approx- 
imate block factorization scheme already presented. Its first main idea is in 
the construction of the blocks {Xi} based on block-size reduction using certain 
restriction matrices. More precisely, let {Ri}l' be a sequence of restriction 
matrices that transform a vector of the dimension of Aii to a lower-dimensional 
vector space, say, of a small (fixed) size m. 

In the application to discretization matrices A, the reduction matrices {Ri} 
have a natural meaning. They can be viewed as transformation matrices of 
a fine-grid vector to a coarse-grid vector. (The vectors correspond either to a 
number of grid lines or to a number of grid-planes in 3-D.) In other words, 
RT are sparse matrices and typically with nonnegative entries (say, for piece- 
wise constant or piecewise linear interpolation). Then the new approximate 
factorization scheme takes the form: 

Algorithm 1 (Block ILU scheme using block-size reduction). Set 

Z1 = All, Z1 RIZIRT; 
for i=2, ..., n compute 

Vi- = Approx -) 

Xi- 1 = RT 1 Vi- I Ri- I Approx, (zl1) 
Zi = Aii -Ai, i-Xi-lAi-l, i, 

Zi = RiZiRT. 
Finally, let 

Yi=Approx2(Zi), i=1,2,...,n. 0 

Here " Approx(.)" stands for an approximation to a given matrix. 
It is clear that Algorithm 1 is a particular case of the general block ILU 

scheme. 
Note that Algorithm 1 resembles in some sense the multigrid method. The 

block Zi is first projected into a coarse space of smaller dimension (restriction) 
and then after finding an (approximate) inverse the result is taken back into a 
space of higher dimension (interpolation). However, this is performed only at 
the block level, similarly to the semicoarsening in multigrid, cf., e.g., Hackbusch 
[13]. 
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The second main idea is that since {Zi} are low-rank updates of {Aii}, one 
can construct approximation matrices { Yi-} 1 on the basis of the expression 
of the exact inverses of {Zi} provided by the Sherman-Morrison-Woodbury 
formula (cf. Golub and van Loan [14, p. 51]). 

More precisely, we have (see ?5 for a detailed derivation) 

We may have to further approximate Ali' (e.g., in the case of 3-D elliptic differ- 
enice equations) by some BJi 1, and Ji_j by Z~i- ,-since V'i- = Approx (271-l),i 

thus obtaining 
1-7 =B-' +BJA'Ai,Ri-RT1 

X [Zi-' -Ri_IAi_I,iAli Ai,i_IRI- 
xR_Ail I i. 1. 

xRi-Ai-,iA1Bj 

That is, Y1 = Approx2 (Z1) is defined by the above representation of 17'l. 
Note that Z~i- - R-1,A-1, ,1Bj7'A1 A, i 1 R'T1 is an m x m matrix, i.e., of low 

dimension and can be easily inverted or approximately inverted, and the latter 
gives other approximate inverses 17' to Z1. This will be considered in more 
detail in ?5. One limiting choice, for example, could be Yi = ZApo 

The purpose of constructing the approximate block factorization matrices C 
is to use them in a preconditioned conjugate gradient method. At every step of 
the iteration method one has to solve a system 

Cv= w 

for some (residual) vector w. Since C is factored, the above system is solved 
in the usual forward and backward recurrences. 

(i) Forward. Solve 

< O An,&,l Y) 2D =Z w 
in the following steps: 

I = Yw1 B i, 
x= 1i71 (w1-RAi,iBzA), i > 2. 

(ii) Backward. Solve 
( I Yi;Ai 2 Y_d ?) (v se j ( 

in the following steps: 
Vn =Zn, 

in the- usuAa,l+fvowi for i = n - 1 down to 1. 
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Note that solving systems with C involves only solving systems with the 
blocks Yi and matrix-vector products with the sparse matrices Ai, i-I, Ai, i+ I 
Note also that if the blocks BJ1 were explicitly given and the blocks 

(Zi- I- Ri- IAi-,, iBIi IAi, I_Ri_I1 

were also explicitly computed, then the above solution process is based only 
on operations that are of the form vector-vector additions and matrix-vector 
products. 

The objective of this paper is to study the existence of the above described 
block ILU factorization process. We also study the performance characteristics 
of the new method, depending upon the approximations of the inverses of the 
diagonal blocks Aii of A. We used sparse approximations BJ' to Ai4' but 
many other choices are also possible. 

3. EXISTENCE THEORY FOR M-MATRICES 

In this section we present the existence theory for the block ILU factorization 
process outlined in the previous section. 

We make the following assumptions. We assume that the original, in gen- 
eral, nonsymmetric matrix A is an M-matrix, i.e., the off-diagonal entries of 
A are nonpositive and A-' has nonnegative entries, cf. Varga [20]. Another 
equivalent definition of an M-matrix is that in addition to the nonpositiveness 
of the off-diagonal entries of A, there exists a positive vector c (i.e., with posi- 
tive entries) such that Ac is also positive. We also assume that the restriction 
matrices Ri have nonnegative entries. Finally, we make the following natural 
(for the applications) assumptions: 

Assumption (I). We assume that the "coarse" matrix 

A11 A12 ? 

(3.1) A 2 A23 = RART, 

O An, n- I Ann 

where 

RI ~ 0) 
R 

~R2 

i Rn 

is also an M-matrix. 0 

We will also need the principal submatrices A(i) of A given by 

tAll Al 2 - 

(3.2) A4(i) (A2 A22 A23 

T Ai, l- t Aii 

There is also a technical assumption for the restriction matrices {Ri I. 
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Assumption (II). We assume that the intermediate coarse matrices A(i) defined 
below are also M-matrices. z 

Denote 

IRI. 

Then, 

(3.3) 
=p+l) _ RART 

A11 A12 

A21 A22 A23 

Ai, i- 1 Aii RiAi, j+l 

Ai+, iRT Ai+l. i+l Ai+l. i+2 

An_l, n2 An-l,n-1 An-l,n 
An, n- 1 Ann 

The above assumptions hold, for example, in the case when A is a finite 
element matrix obtained from discretization of second-order selfadjoint elliptic 
problems on right triangles and piecewise linear basis functions. For the restric- 
tion matrices Ri in this case one can choose a piecewise constant restriction. A 
similar example can be obtained from cell-centered finite difference approxima- 
tions of second-order elliptic problems, cf., e.g., Ewing, Lazarov, and Vassilevski 
[12], and Vassilevski, Petrova, and Lazarov [23]. In ?4 we, however, present a 
general choice of the restriction matrices {Ri} such that for any M-matrix A, 
also A and A(i) are M-matrices. 

We specify now the algorithm of block ILU factorization. More precisely, in 
Algorithm 1 we restrict the class of matrices { Vi- 1 } to satisfy certain constraints 
which make sense for M-matrices. Namely, we have 

Algorithm 1' (Block ILU factorization of M-matrices). Set 

Z= All, Z1 = RIZIR . 

For i = 2, ... , n compute Vi-I such that 

0 < Vi? ZIA (componentwise), 

Xi(4X = RT I Vi_IRi11 _ Approx1 (Zj) 

Zi = Aii- - ,j_-Xi-lAj_j,j 

Zi = RiZiRT. 

The construction of the blocks Yi = Approx2(ZA) or rather 7i-1 will be 
discussed in ?5. 
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In practice, one can specify certain sparsity patterns of { Vi- 1 } by letting 
some of the entries of VJ-I be zero. When we do not have any restriction of 
the block size (i.e., when Ri = I-the identity matrix), this algorithm reduces to 
the block ILU methods studied in Concus, Golub, and Meurant [10], Axelsson 
and Polman [5]. 

Our first goal is to show that 2i and Zi are M-matrices and therefore the 
above choice of V4- I justified; i.e., the block ILU factorization matrix C, (2. 1), 
of A is well defined as long as the approximations Yi to Zi are invertible. In 
particular, if A is a symmetric and positive definite M-matrix, this will imply 
that the blocks Zi are positive definite (and symmetric) and hence the block 
ILU factorization matrix C is positive definite as long as the approximations 
Yi to Zi are positive definite. The non-M-matrix case will be considered in ?6. 

We next adopt the following convention. A matrix, or a vector, is called 
nonnegative if its entries are nonnegative. We say that the matrices W and G 
satisfy the inequality W >, >, <, or < G if this is true componentwise. The 
same relations we may use for vectors. 

First, we show that Zi = RiZiRT are M-matrices. 

Lemma 1. For any choice 
0?< Vi-I <?z-i 

starting with i = 2, the next approximate coarse Schur complement zi is an 
M-matrix and the choice of the next Vi (O < Vi < 2-1) justified. 
Proof. Note that 

Z1 = RIZIRT = R1A11RT = '1ll 

is the first block on the diagonal of the coarse matrix A, which is an M-matnix, 
hence Z1 = All is an M-matrix as a principal submatrix of A. We also note 
that A12 

zAll A12 ? 

A= A21 A22 I' 

0 An, n-I Ann 

with 

Ai, i-lI = RiAi, i- IRI- , 

(3.5) Aii = RiAiiRT, 

Ai, i+I = RiAi, i+,Ri+,. 

Next, we will need the matrices {Db} from the exact block factorization of 
4; namely, 

DI 0' /I D- A12 0' 

(3.6) (A21 D2 K bT* 4 2 123 
i Anen-, Dn 

i.e., 
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Note that the blocks {DA} are M-matrices, since they are Schur complements 
of corresponding main submatrices of A, which is assumed to be an M-matrix; 
namely (see (3.2)) 

/ 0 
(3.8) =A11-(o,... 

Our main goal is to show that 

(3.9) Zi >D. 
We then show that (3.9) implies the desired result, i.e., that Zi is an M- 

matrix. 
First note that 

(3.10) Z1i < Aii, 

because 
Z Rt=ARiZiRT 

= RiAiiR7' - RiAi, i- I RiT I Vi- I Ri- I Ai- 1, iRiT 

= Aii - {nonnegative term}. 

The last is true because of the choice of Vi-I > 0, the assumption Ri > 0, and 
since Ai,-i_ < 0, Ai_1,i < 0 as off-diagonal blocks of the M-matrix A. 

Inequality (3.10) implies that Zi has nonpositive off-diagonal entries, since 
Aii has nonpositive off-diagonal entries (which are off-diagonal entries of A 
and the latter was assumed to be an M-matrix). Then inequality (3.9) suffices 
to guarantee the M-matrix property of 2i since bi is an M-matrix (as a Schur 
complement of A(i), which is an M-matrix as a principal submatrix of A; see 
(3.8)). The latter implies that there exists a positive vector ci such that Dbii > 
0. Then (3.9) implies that Zici > 0, which together with the nonpositiveness 
of the off-diagonal entries of 2i shows the desired M-matrix property of Zi. 

The M-matrix property of Zi and bi and (3.9) show that b-71 (Zi - Ai) 2 
> 0 , i.e., 

(3.1 1) - >Z-. 

We now prove (3.9) by induction. We have that (3.1 1) holds for i i - 1, 
i.e., we have Db7 >2['l, which follows from the induction assumption (3.9) 
for i := i - 1 and its corollary that Z_i is an M-matrix, which we already 
demonstrated. This also justifies the choice of Vi- I. Then using (3.11) (for 
i := i- 1), the inequalities Ai, _1 < 0, Ai-,,i < 0, and the constraint on 
Vi-I .we get 

D= Aii- Ai,i-I Z-jlAii1,i 

< Aii -Ai, i-l Vi-,Ai-l,,i 
=zi, 

which completes the proof of (3.9) and the proof of the lemma as well. 5 

Remark 1. Note that if Vi- = Z, i= 1,2, ..., n, then the last series of 
inequalities implies that bi = 2i (for all i = 2, .. ., n). In other words, Vi = 
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are the inverses of the Schur complements of the exact block factorization 
of the coarse matrix A; see (3.6), (3.7). 

Lemma 2. The approximate Schur complements {Zi} are M-matrices. 
Proof. Consider now the following block matrix, 

(3.12) ( Di RA1, i+1) 
Ai+1,,1RT Ai+1,,+11 

Note that it is a principal submatrix of the Schur complement of A(i+j) when 
the block A(i-1) is eliminated (see (3.3), (3.2)). By assumption, then, we get 
that (3.12) is an M-matrix. This implies that there exists a positive vector [cc' 1 
such that 

Di RiAi, i+ I[ Ci > 0. 
Ai+,, iR7T Ai+,,i+1 J[Ci+i] 

Using now inequality (3.9), we obtain that 

[ b1 1 _ ( Zi RiAi, i+ [ I > 0. 
[bi+l] k,Ai+1,,1RT Ai+,, i+I [Ci1+i 

This inequality and the fact that Zj is an M-matrix imply that 

(3.13) ( Zi RiAi, i+ I 

is also an M-matrix. Hence, since Zi is an M-matrix, we see that 

0< [ bi] I(I Z lA +1) [c] 
i.e., we have that 

I Z7-1R1Ai,i+i'A 
(Ai++, jRiT Ai+,, i+ I 

is an M-matrix as well. Finally, based on the constraint on Vi, namely, 

0< J<Z[iI, 

we see that 

(3.14) ( I V1iRAi, +I') 

is also an M-matrix. This follows from the inequalities (note that Ai, i+ < 0 
and Ri > 0) 

0< bi < bi (Vi Z- )RiAi[]i+j[i+[ 0 < i i + ~~~A1i + 
I ViRiAi,i+lA ci1 

(Ai+,+iR7T Ai+R,Ai+ I Ci+) 
Hence, the Schur complement of the last matrix (3.14), 

(3.15) I - G = I - ViRiAi,,i+1 A7 'i+1Ai+,, iRT 

is an M-matrix. In particular, we get that 

(3.16) (I-G)-G >0. 
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Next we show that Z-1 is nonnegative. To this end, we use the Sherman- 
Morrison-Woodbury formula for Zi+j in the following form (see (5.1), ? 5 for 
a detailed derivation), 

ZI72 =A-' + A-' Ai+,, iR71 
xi (+I-Vi+Ri+I, i+lA.+l I+il R 

x ViRiAi,+iAT4% i+ i1 

With the help of the inequalities (since A is an M-matrix) 

Ai,i+1, Ai+l,i <?, A-', i+I >?' >0, 

and (3.16) (see (3.15)), the nonnegativity of Z7j1 follows. 
We also have by construction that 

Zi <?Aj, 

i.e., the off-diagonal entries of Zi are nonpositive (because the off-diagonal 
entries of Aii are nonpositive; A and hence Ai are M-matrices). The last two 
arguments imply that {Zi} are M-matrices. O 

Thus, we have proved the following main result: 

Theorem 1. Algorithm 1' (block ILU) is well defined; it gives the block-factored 
matrix C, (2.1), constructed on the basis of the M-matrices Zi and Zi for any 
choice of the matrices Vi that satisfy the inequalities 0 < Vi < Z7i1 . In par- 
ticular, when A is a symmetric and positive definite M-matrix, the blocks Zi 
and Zi are positive definite and hence C is positive definite for any choice of 
symmetric and positive definite approximations Yi for Zi . 

Remark 2. We remark that the above result is valid even if we do not have any 
reduction of the block size. In that case, Ri = I-the identity matrix. And this 
is a known result already presented in Concus, Golub, and Meurant [10]; see 
also Axelsson [1], [2] and Axelsson and Polman [5]. 

4. VERIFICATION OF ASSUMPTIONS (I), (II) 

In this section we verify Assumptions (I), (II) for a specific choice of the 
restriction matrices {Ri} in the case of a general block tridiagonal M-matrix 
A. 

In this section, A can be any block matrix {A1,j} with blocks Ai,j of size 
ni x nj for some integers ni. We assume that A is an M-matrix and also that 
there is an explicitly given positive vector 

[Vj 

Lvn - 

such that 

(4.1) Av>0. 

Note that for M-matrices there always exists a vector c > 0 (e.g., corresponding 

to the Perron root of A > 0 or simply c = A- [:] ) such that Ac > 0, and 
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it is in general expensive to be computed. However, in the case of strictly 
diagonally dominant matrices one can simply choose 

(4.2) Vi= 1 E n 

and (4.1) will hold. This is one of the examples that can be used in practice. 
Moreover, when A has a positive definite symmetric part, any positive vector 
v is appropriate, as we shall see in a moment (see Theorem 4). 

Consider now any partitioning of vi, 

I I 
(4.3) vi= 2 

VM 

for some integer m < ni. We remark that m can vary with i, but in order to 
simplify the notation we shall not indicate this explicitly. 

For the given positive vector vi partitioned as above we define the following 
restriction matrix, 

/ v(i O .. .T 

(4.4) R ( 
2 

? V~~m 

which is an m x ni matrix. Note that in practice, for strictly diagonally domi- 
nant matrices A, {Ri} can be constructed on the basis of the vectors (4.2). 

Consider now the matrix A(j+1) defined by (3.3), i.e., 

RI ?' /RT O0 

A^(i+1) = (Ri ) Ri 
(4.5) KR1 A R[T 

O I O 

= RART. 

Consider also the following vector, 

el 

W=Vi+ l 

L vn - 

where 

L1 J 
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Note that 

(4.6) RTei = vi. 

Our next goal is to show that A(i+l)w is a positive vector. This will imply 
that AN+ 1) is an M-matrix, since by construction its off-diagonal entries are non- 
positive. This is seen from the fact that these off-diagonal entries are obtained 
by linear combinations of the off-diagonal entries of A which are nonpositive 
(A is an M-matrix) with coefficients from {Ri} which are nonnegative. Note 
also that {Ri} have block diagonal form. 

We consider 
(A(l+1IW) 

for three different cases. First let 1 < j < i. Then 

(A(i+w)w Rj [Aj,j-IRJ Iej_I + AjjRTej + Aj,j+l RfT ej+l 

=Rj [Aj, j_I vj1I + Ajjvj + Aj, j+Ivj+i] 
= Rj (Av)j 
>0. 

Next, for j = i we have 

(A(i+1)w) =Ri [Ai,i-IRT lei-, + AiiRTe1 + Ai, i+lvi+1] 

= Ri [Ai, j- Ivi- I + Ajivi + Ai, i+ Ivi+ I 
= Ri (Av)i 
>0. 

And for j> i, 
(A(i+1)w) = (Av)j > 0. 

In the above we have used equality (4.6). 
We note that '(i+)w > 0, i.e., we have strict inequality if Av > 0. Thus, 

we can formulate the following result. 

Theorem 2. Consider the positive vector v such that Av > 0. The block entries vi 
are partitioned into the form (4.3). For the restriction matrices defined by (4.4), 
the intermediate coarse matrices A(i+ ), (3.3), and the coarse matrix A - A(8) 
are M-matrices. 

The above assumptions can be relaxed as follows. In some cases it is possible 
to directly verify that the intermediate coarse matrices A(i+') are nonsingular. 
Then we can assume that (4.1) holds in a weaker form; namely, Av > 0 for a 
given positive vector v. 

We next need the following auxiliary result for M-matrices. It can be proven 
following the lines from Theorem (2.3) (the section on semipositivity and diag- 
onal dominance, p. 138) in the book of Berman and Plemmons [7]. 

Lemma 3. Let A = (ai,j)n7j=l be nonsingular with nonpositive off-diagonal en- 
tries. Let also for some given positive vector v = (vi), Av > 0. Then A is an 
M-matrix. 

We can prove now the following result. 
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Theorem 3. Let v = (vi) > 0 be such that Av > 0. Consider Ri defined by 
(4.4), constructed on the basis of the partitioning (4.3) of vi. Finally assume 
that the resulting intermediate coarse matrices A(i+l) are nonsingular. Then we 
have that A(i+l) are M-matrices. 
Proof. The proof repeats the proof of Theorem 2. In particular, we get that 

A('+')w > 0 forw= ew ej= E Rm. 
L[J 

L Vn J 

The desired result then follows from Lemma 3 applied to the matrix A(i+l) 
and the vector w, since we have assumed that A(i+1) is nonsingular. 5 

The final result concerns M-matrices with positive definite symmetric part. 

Theorem 4. Assume that A is an M-matrix with positive definite symmetric 
part (i.e., A + AT is positive definite). Then for any choice of positive vectors 
v = (v1) with block entries vi partitioned into the form (4.3) and corresponding 
restriction matrices Ri defined by (4.4), the intermediate coarse matrices A(i+') 
are M-matrices. 
Proof. Since A has a positive definite symmetric part then A(i+l) - RART 
(see (4.5)) will be nonsingular if R is of full rank. This is the case for our 
restriction matrices for any choice of nonzero vectors vl , ... , v() in (4.3). 
Note that RiRT are diagonal with positive entries on the main diagonal, hence 
RRT is invertible. Thus, RTz - 0 implies RRTz - 0 and hence z = 0. 
We also have that A'+ 1) admits L1L2. D-1 U2U1 (i.e., standard Cholesky 
factorization) since it has positive definite symmetric part, which is seen from 
the identity 

(4.7) A^(i+l) + A^(i+lil = R(A + AT)RT. 

The factors Li (unit lower triangular) and Ui (unit upper triangular) have 
nonpositive off-diagonal entries since A'(i+1) has nonpositive off-diagonal en- 
tries. This shows that Li and Ui are M-matrices. We also have that D > 0 
(the diagonal matrix from the factorization of A^(i+') ) since A^(i+1) is positive 
definite. Thus, we have that A^(i+1)-' = U1I U- ... D .. L-lL-l > 0, i.e., the 
M-matrix property of A('+1) is verified. a 

5. APPROXIMATIONS OF THE SCHUR COMPLEMENTS 

In this section we derive some approximations Yi- 1 to the inverses of the ap- 
proximate Schur complements Zi, since the latter can be expensive to compute. 
Our main focus will be on approximations based on the exact representation 
of Z-1 given by the Sherman-Morrison-Woodbury formula. We assume that 
A as well as the intermediate coarse matrices A(i+l) (see (3.3)) are M-matrices 
and that Ri are nonnegative. 
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We start with the exact block factorization of A, 

D1 0 I f) I 'j D A2 ? 0 

A(= A21 D2 I *)( . 

i An, n-, DnJ o I 

We note that with Pi replaced by Zi or by Vi-1 we obtain approximate block 
LU factorizations of A already studied in Concus, Golub, and Meurant [10] 
and Axelsson [2], Axelsson and Polman [5]. In practice it makes sense to factor 
A exactly if m, the dimension of the blocks Di, is reasonably small. 

We recall the formula for the blocks Zi, (3.4), 

Zi = Aii -Ai, i-lRiT I V_i-Ri_IAji-, i. 

Note that Zi are not sparse matrices because of the factor RT11 . That is why 
we cannot in general expect that Zi or Z71 can be well approximated by sparse 
matrices. However, as already mentioned, we can derive exact expressions for 
the inverse of Zi exploiting the fact that 

Ai, j_1RT Vi- Ri-Ai-,,i 

is a low-rank matrix. Then, using the Sherman-Morrison-Woodbury formula 
(cf., Golub and van Loan [14, p. 51]) 

(M - FG)-1 = M-1 + M-'F (I - GM-F) GM-1 

for 
M = Aii, 
F =AAi,i-IRfT 1 

G = Vi-,Ri-,Ai-,f,i 
we get 

Z-1 = A-' +Aj'Ai,i-RT[ 

x (I-V_lRi_lAi_l,iAi1Ai,j_.R7) 

5 1 ~~~x Vj_jRi_IAi_j, iA1 (5.1) 
x 1R11 i,7 

= A'1 +Aj'Ai,i,1RR1 

x (Vijl -R1.1A1, 1A71A1, 1RT 

? Ri- IAi- 1,iA 7l.I 

The last identity is our starting point for deriving approximations Yi- 1 to Zi- 1. 
Note first that ViJI was intended as an approximation to Z1-l , hence it is 

natural to replace Vi-1 by Zi-1 . In the applications this makes some differ- 
ence in storage, since A is sparse and Zi-1 is kept sparse (say, banded) by 
construction. 

Next we can use 
Ai_l , iali 1i, i-l 

as an approximation to 
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Moreover, we may want to approximate Ai1 by some sparse or readily available 
(in an algorithmic sense by its actions) matrix B71. In some of the applications, 
Ass is strictly diagonally dominant, hence A-1 has a good decay rate behavior 
(for more details, cf., e.g., Demko, Moss, and Smith [111 or Vassilevski [211). 
For M-matrices it is natural then to assume that 

0 < B-1 < A-1 

with most of the entries of BJ1 being zero. 
We summarize the approximations to Z -I: 

Approximation (1): 

Yi-l Bi 1+i Ai,i_ls 11 
X (Zi-I -Ri-,Ai-l,,iB-i Ai, i-,RI- 

xRi-,Ai_-,,iB-i1. 
Approximation (2): 

YF'= Bj1 + B- Ai, i-IRT 

X(--Ai-,, iA-ili -l 

xRi-,Ai_-,,iB-i1. 
We recall that in order to solve the systems with the block ILU factorization 

matrix C, (2.1), we have to solve systems with the blocks Yi, i.e., to solve 
systems of the form Yivi = wi or to compute vi = Y7 lwi. The expressions 
from the above approximations (1) and (2) for Yi-1 show that we need to be 
able to efficiently solve systems with Bi, when Bsi are computed, or to have 
the actions of BJ' readily available. Finally, note that we also need the blocks 

(5.2) Ti1 _Zi_ -Ri_Ai_ ,1iBJ1Ai,i_ R7" I, 

or 

(5.3) Ti_- I i- I- 4i- I, iAIils 
to be easily inverted (or factored). This is the case (for (5.2)), assuming that 
{R1} are of the form (4.4), since Zi-1 is kept sparse and if G1i = 1 is a sparse 
approximation to A.l. For such approximations, see Concus, Golub, and Meu- 
rant [10], Axelsson, Brinkkemper, and Il'in [3], Axelsson [1], and Vassilevski 
[21] for band matrices, and Demko, Moss, and Smith [11] and Vassilevski [22] 
for more general sparse matrices. 

However, for both approximations (1) and (2), when the dimension m of 
the blocks Z1 I is reasonably small, it may make sense to invert (or factor) the 
blocks (5.2) and (5.3) exactly. Another alternative for the second approximation 
is to further approximate A41 by some easier (for computations) matrix B-', 
similarly to the approximation B`I1 of A`. 

We summarize below the algorithm for the computation of the blocks { Y5- } 
based on approximation (1). 

Algorithm 2 (Approximate block-factorization of A). 
(1) Factor the coarse matrix A: 

Z1 = A11. 
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For i = 1, 2, ..., n - 1, let Vi be such that 

o< VI?Z -, 

then form 
Zi+l = Ai+, i+1 -Ai+,, i ViAi, i+1; 

(2) compute an approximate inverse to Aii: 

0 < B1 < A-1; 

(3) update Zi, i.e., compute (see (5.2)) 

Ti = Zi - 
RiAi,i+,B-1 

A+ Ri 

and let 
(4) 

Ui = Approx (Ti-) 

be some approximation of Ti-1 such that the actions of Ui on a vector can be 
computed inexpensively. Then 

(5) 
1Al+l = B+1 i+ + B+,1 i+1A1+,RTURI A,I+I B i+;,1 i+. a 

A similar algorithm is obtained when we use approximation (2): 

Algorithm 3 (Approximate block-factorization of A). 
(1) Factor the coarse matrix A: 

Z1 = A11. 

For i = 1, 2, ..., n - 1, let Vi be such that 

0 < Vi?< Z-, 

then form 
Zi+l = Ai+,, i+ - Ai+,, i ViAi, i+l; 

(2) update Zi, i.e., compute (see (5.3)) 
- - ~ ~ 

-_I 
- 

Ti = Zj -Ai, i+,A-+l iAi+,, i; 

and let 
(3) 

Ui = Approx (T-) 

be some approximation of Ti- 1 such that the actions of Ui on a vector can be 
computed inexpensively. Then 

(4) 
B-+ =sll,i+l + B-+l,i+jAi+j,jiRTUjRiAi, i+ls.B-1+l* 

Remark 3. Based on the identity (which results from another application of the 
Sherman-Morrison-Woodbury formula) 
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one may be motivated to use the following approximation Ui of Ti-1 (see 
(5.3)), 

Ui = Vi + ViAi, i+l Vi+A1i+I, iVi, 

since Vi was intended as an approximation of 27- and Zi was an approxima- 
tion of the exact coarse Schur complement bi . This approximation avoids step 
(3) of Algorithm 2 (or step (2) of Algorithm 3), i.e., the approximate inversion 
of Ti, since the factors Vi are already computed (see step (1) of Algorithm 
2 and Algorithm 3). However, one action of Yi-7 in this case is, in general, 
more expensive than in the previous cases when we had the blocks Ui explicitly 
computed. 5 

Next, we show that the above algorithm is well defined; namely, that the 
blocks Ti defined by both (5.2) and (5.3) are M-matrices. For (5.2) this is the 
case under the assumption that 

(5.4) 0 < BJ1 < A'1. 

Note that the above inequality makes sense, since Aii is an M-matrix as a 
principal submatrix of A, which was assumed to be an M-matrix. 

The proof follows easily from the fact that (see (3.13) in the proof of Lemma 
2) 

Zi- I Ri- IAi-,, iA 
tAj,ji-lRiT Aii J 

is an M-matrix, and therefore its Schur complement 

2j- 1- Ri- IAi- 1, jAli 1Ai, i- IR7' 

is an M-matrix as well. Finally, using inequality (5.4), we get that 

Ti- I = 2j- 1- Ri- IAi- 1, jBli 1Ai, j-I_R7T 

is an M-matrix. Then it is natural to assume that U1_1 satisfies 

O < Ui-_ < T.- - 

This is the case for the approximate inverses of banded matrices used in Concus, 
Golub, and Meurant [10], Axelsson [1], Axelsson and Polman [5], or Vassilevski 
[21], [22]. 

In a similar (even easier) way one can show that 

is an M-matrix. Consider the M-matrix (a Schur complement of A(i), which is 
an M-matrix as a principal submatrix of the coarse matrix A) 

Di_- 1 i- 1,iA 
Ai, i- 1 Aii 

and then use inequality (3.9) (for i := i - 1 ) to see that 

Zi_l Ai- 1,iA 
VAi, i- 1 AiiJ 

is an M-matrix. Hence, Ti-1 defined by (5.3) is an M-matrix as a Schur com- 
plement of the last matrix. We summarize the above results in the following 
theorem. 
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Theorem 5. The Algorithms 2 and 3 are well defined; the blocks Ti needed in 
the Sherman-Morrison- Woodbury formula, (5.2) or (5.3), are M-matrices under 
the assumptions made in ?3. For Ti defined by (5.2) we have the additional 
requirement that the approximate inverses BJ1 of the blocks on the diagonal of 
A satisfy the inequality 0 < B1 <A1. Also, Ti-1 can befurther approximated 
with sparse matrices or more generally by matrices Ui that satisfy the inequality 
O < ui <U1? 11. 

Proof. The last statement of the theorem follows from the fact that T-1 > 
and hence the inequality 0 < Ui < Ti-1 makes sense. O 

6. POSITIVE DEFINITE MATRICES 

We now present the existence result for a limit case of the approximate block 
factorization method developed in the present paper for generally nonsymmetric 
block tridiagonal matrices that have positive definite symmetric part. The result 
is valid for arbitrary choice of full-rank restriction matrices {Ri}, see Algorithm 
1'. We emphasize that here we do not need the M-matrix property. However, 
at this time we require that the blocks {Z1i} are exactly inverted, i.e., Vi = 
Z-l . The symmetric positive definite case will be studied in more detail in a 
forthcoming report (see some preliminary results in [9]). 

We are given the positive definite (i.e., with positive definite symmetric part) 
block tridiagonal matrix 

All A12 0 

A21 A22 A23 

A= 

An-l, n-2 An-l, n- 1 An-l, n 

0 An,n-1 Ann' 

we let 

(6.1) A= (RiAi, jRT) = (Ai, 

be the coarse matrix for some restriction matrices {RJ}n=1 . The {Ri} can be 
any full-rank matrices and therefore they are more general than those of ?4. 
The full rank of {Ri} guarantees that A has positive definite symmetric part, 
which we will further refer to as positive definiteness. 

The approximate block factorization (or block ILU) process, which is a limit 
case of Algorithm 1' ( Vi- = Z-1 ), is described by the following algorithm: 

Algorithm 4. Set 
Z, = Al; 

for i = 1 to n - 1 compute 

(6.2) = R 1Z RJ, 

Note that at this time we use the exact inverses of Zi . Hence, this algorithm 
is of practical interest when m, the size of the coarse blocks Zi, is relatively 
small. 
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The block ILU matrix is then defined as follows: 

C ( A21 Z- 'A (I3 ZV'A2 0 

( An,n-1 Zn K 

i.e., Yi = Zi (see (2.1) and the General Block ILU Scheme). 
We now prove the main existence result. 

Theorem 6. Let A be a block tridiagonal matrix with positive definite symmetric 
part, i.e., let 

(A+AT) 

be positive definite. Then for any choice offull-rank restriction matrices {Ri}, 
Algorithm 4 is well defined; namely, the blocks Zi and Zi = Di are positive 
definite (i.e., with positive definite symmetric part). (Recall that Di are the 
blocks from the exact block factorization of the coarse matrix A, see (3.6).) 
Proof. We first note that 2i = bi (see Remark 1 at the end of Lemma 1). This 
shows that the Zi have positive definite symmetric part as Schur complements 
of principal submatrices of the coarse matrix A, which has positive definite 
symmetric part owing to the full rank of R. 

Consider now the intermediate coarse matrix A(i+'1) defined by (3.3). By 
(4.7), since {Ri} are of full rank, it follows that A(i+'1 is positive definite. 
Therefore, any principal submatrix of A(i+1) is positive definite. This implies 
that the matrix 

All A12 0 

(A21 A22 A23 

Ai, i-l Aii RiAi, j+l 
Ai+,, iRiT Ai+,, i+l 

is positive definite. Recall (see (3.5)) that A4i = RiAi,jRT. This implies that 
its Schur complement (see (3.2) and (3.8) with bi = 2i 

Ai+ , -i+ l(, .- . ., A;+i,iRT) A(i) ( +) 
iRiAi, j+l/ 

= Ai+,, i+l-Ai+,, iRiT 'RiAi, i+l 
= Zi+l, 

has positive definite symmetric part. 0 

7. NUMERICAL RESULTS 

In this section we show some numerical illustration of the block ILU method 
proposed in the present paper. Also, we compare its performance with a variant 
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of the smoothing-correction scheme of Wittum [24] and the more classical block 
ILU methods (cf., e.g., Concus, Golub, and Meurant [ 10], Axelsson [ 1], Axelsson 
and Polman [5], Vassilevski [21], etc.). 

The matrix A is obtained by finite element discretization of the following 
second-order elliptic equation, 

-V. (a(x, y)Vu) = f(x, y), (X, Y) E Q = (O, 1)2, 

and 
uUX=0, uly=o given, 

AX jIy=j given. 
The problem is discretized by piecewise linear basis functions on isosceles right 
triangles with meshsize h = 1/n, n > 1 an integer. The block tridiagonal 
structure of A in this case refers to an ordering of the meshpoints, say, along 
the vertical grid lines. In this case, A is a symmetric positive definite M-matrix. 

The test problems are as follows. 

Problem 1. u = e-x (x2 + y2), a(x, Y) = 1+x2+y2- 

Problem 2 (a discontinuous coefficient). 

U (x-l12)(y-l12),P(x,y)a-1, a(x,Y) = 1 
93 x < 1/2 ordy < 1/2, 

(x, y) = sin i7rX / (i +x2+y2)- 

The first preconditioner tested was 

C1 = (I - LY) Y-1 (I - YLT) 

where the block -L is the strictly block lower triangular part of A and Y is 
a block diagonal matrix. The blocks {Yi}n 1 on the main diagonal of Y were 
computed by the following algorithm (cf., e.g., Concus, Golub, and Meurant 
[10], and Axelsson and Polman [5]): 

Y1 = [A11] 

Y = [(A - Aj, j-lY_Aj_,j)-1] for i > 1 

where [B-1] stands for a (2p + l)-banded approximation of B-1 for a given 
matrix B. We chose the so-called CHOL approximation, cf., e.g., Concus, 
Golub, and Meurant [10] and Vassilevski [21]. It is defined on the basis of the 
exact LD- U factorization of B by 

where [V](P) stands for the exact 2p + 1 inner-most banded part of V. In the 
case of banded matrices B, the CHOL approximation of B' can be computed 
inexpensively (cf., e.g., Vassilevski [21] for arbitrary p 1 ). 

The second preconditioner CI, was based on the smoothing-correction tech- 
nique proposed by Wittum [24]. It is defined as follows: 

Cl = (Y) - L) y(')-' (Y(l) - LT) 

+ [(y2 L) y(2)-' (y(2) - T) 1 
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Now the blocks {Y ()} of Y(s), s = 1, 2, are tridiagonal and computed by 

the following algorithm: 

Y(s) =A11, 

y(s): y<(s)V(r)=(A11-Aj,j_ Y(s)Aj 1_ ,.V(r) forr=1,2andalli>1, 

for the following vectors 

v {sin ((i - 1)irh) }h 
- {sin ((i - 2)ir2h) }?n 

for s = 1, and 

v( = {sin ((i - )zvh) In 

v(2) = {sin ((i -2) + 1)h) in 

for s = 2. In our test we have chosen 
-n- 

v= 7. 

The existence of a symmetric tridiagonal matrix T such that its actions on 
given two vectors is the same as the actions of another symmetric matrix W 
on the same vectors is shown in Wittum [24]. We remark that in Wittum [24] 
the above two factorizations were used in a stationary iterative procedure (called 
smoothing-correction scheme), whereas we use them as an additive precondi- 
tioner in the CG method. 

Finally, the third preconditioner tested was the one proposed in the present 
paper, namely, the approximate block factorization matrix C = CIII, (2.1), 
with piecewise constant restriction matrices Ri, i.e., 

'e 0' 
eT 

Ri 
2 

2 eJT 

where 

n 
e=() E Rno and no= -. m 

The dimension of the coarse vectors m was varied throughout the test. 
The blocks {Yi} of C in (2.1) are defined by approximation (I) from ?5, 

where 
B = [A-'], 

i.e., the (2p + 1)-banded CHOL approximation to AQ l . These approximations 
are accurate since Aii, the blocks on the diagonal of A, are strictly diagonally 
dominant and hence A[1 have good decay-rate behavior (cf., e.g., Demko, 
Moss, and Smith [11], or Vassilevski [21]). We varied also the semibandwidth 
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p > 1 throughout the test. The coarse blocks computed throughout Algorithm 
2 in the present test were inverted exactly (i.e., Vi = Z' 

We solved the corresponding discrete problems 

Ax = b 

by the preconditioned conjugate gradient method, using the above described 
preconditioners C. The initial iterate was 

Xo= C-'b. 

Let ro = b - Axo be the initial residual, r the current one, and set 

A0 = rC-1ro, A = rTC-r. 

The stopping criterion was 

A < e - 10-18. 

In Tables 1-9 we show the number of iterations, iter, required to achieve the 

desired accuracy e and p - ( 
t- 

, the average reduction factor. 

We see from Tables 1-2 that preconditioner C,,, performed such that the 
number of iterations increased about linearly with I . This is clearly seen, as 
for a fixed m when n is doubled the number of iterations has also been (nearly) 
doubled. 

The preconditioner C,,, exhibited a quite robust performance with respect to 
discontinuous coefficients (see Problem 2). Also, we see that if the blocks A.1 
were approximated accurately enough (in our case p = 4 was a good choice), 
the performance of the approximate preconditioner was close to the exact case. 
However, if the approximations of A71 were rough, then it did not pay off to 
choose a very fine coarse-vector space, i.e., an m close to n . This was the case 
for semibandwidth p = 1, see Tables 3-4. 

The new method showed better convergence results than the classical block 
ILU preconditioner CI, see Tables 8-9, and for -< 4 was competitive with 
Wittum's preconditioner CII, see Table 7. This is of course only in terms of 
number of iterations and average reduction factors. On a particular computer 
one has to take into account the timings, which will crucially depend on the 
implementation and on the computer itself. To be more precise, we have to note 
that the preconditioner C,,, has the most expensive inverse action (in terms of 
number of operations). The test should be seen only as a demonstration of the 
potential of the new preconditioner. We also note that it is directly applicable 
for matrices that arise in the discretization of 3-D elliptic partial differential 
equations. For Wittum's preconditioner it is -not clear how to build the blocks 
{y(s) } of y(s) (whether they should be tridiagonal or not). It is also seen that 
the preconditioners C, and C,,, are vectorizable. 

Finally we remark that at this point we have not explored various possible 
modification techniques in the factorization process similar to the MINV pre- 
conditioners studied by Concus, Golub, and Meurant [10]. 
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TABLE 1. Preconditioner CIII: Number of iterations and aver- 
age reduction factors; exact blocks A' 1, Problem 1 

n m 2 4 8 16 32 64 
- iter 102 71 42 27 17 11 128 P 0.822 0.754 0.617 0.468 0.310 0.152 

64 iter 52 38 24 16 10 
P 0.680 0.590 0.440 0.287 0.140 

32 iter 28 21 14 9 32 P 0.480 0.375 0.240 0.119 

15 iter 15 12 8 
P 0.256 0.175 0.089 

TABLE 2. Preconditioner CIII: Number of iterations and aver- 
age reduction factors; exact blocks A' 1, Problem 2 

n m 2 4 8 16 32 64 

128 iter 107 73 44 26 16 10 
P 0.840 0.776 0.655 0.483 0.312 0.160 

64 iter 55 38 25 16 10 
P 0.715 0.614 0.484 0.309 0.147 

32 iter 29 21 14 9 32 itrP 0.527 0.407 0.266 0.123 

15 iter 16 12 8 15 P 0.301 0.20 0.10 

TABLE 3. Preconditioner CIII: Number of iterations and aver- 
age reduction factors; p = 1, Problem 1 

n m 4 8 16 32 64 

128 iter 112 90 78 71 69 
P 0.830 0.791 0.765 0.743 0.737 

64 iter 60 48 43 41 
P 0.706 0.647 0.614 0.601 

32 iter 32 27 25 
P 0.528 0.466 0.430 

15 iter 17 16 
L P 10.302 10.278 
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TABLE 4. Preconditioner CIII: Number of iterations and aver- 
age reduction factors; p = 1, Problem 2 

n m 4 8 16 32 64 

128 iter 138 104 86 80 80 
P 0.870 0.831 0.80 0.789 0.786 

64 iter 70 55 47 46 
P 0.762 0.704 0.667 0.655 

iter 37 30 28 32 P 0.602 0.545 0.506 

16 iter 20 18 
16 P 0.395 10.369 

TABLE 5. -Preconditioner CIII: Number of iterations and aver- 
age reduction factors; p = 4, Problem 1 

n m 4 8 16 32 64 

iter 73 44 28 19 12 
128 P 0.760 0.632 0.486 0.332 0.185 

64 iter 39 25 17 11 64 
itrP 0.594 0.448 0.300 0.160 

32 iter 21 15 10 
32 P 0.383 0.248 0.125 

iter& 12 9 16 P 0.181 
1.0.091 

TABLE 6. Preconditioner CIII: Number of iterations and aver- 
age reduction factors; p = 4, Problem 2 

m 4 8 16 32 64 

18 iter 79 53 34 23 15 1 28 itrP 0.787 0.698 0.581 0.434 0.275 

64 iter 43 *29 19 13 
64 iP 0.651 0.526 0.388 0.240 

32 iter 23 16 11 
32 

itrP 0.453 0.326 0.199 

16 iter 13 8 16 P 0.233 0.149 
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TABLE 7. Wittum's Preconditioner: Number of iterations and 
average reduction factors 

Problem 1 Problem 2 
n P iter P iter 

128 0.285 18 0.460 25 

64 0.250 16 0.373 20 

32 0.242 16 0.356 19 

16 0.193 13 0.312 17 

TABLE 8. Classical Block ILU Preconditioner: Number of iter- 
ations and average reduction factors; p = 1 

Problem 1 Problem 2 
n P ite P .hiter 

128 0.886 173 0.902 188 

64 0.789 93 0.821 96 

32 0.630 48 0.674 47 

16 0.425 26 0.492 27 

TABLE 9. Classical Block ILU Preconditioner: Number of iter- 
ations and average reduction factors; p = 4 

- Problem -_1 Problem 2 
n P Iiter P iter 

128 0.699 57 0.735 61 

64 0.500 31 0.560 32 

32 0.283 17 0.337 18 

16 0.145 11 0.251 12 
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